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pears that customary unfavorable low-speed induced drag
limitations can be ameliorated by these means,

With regard to flapping frequency, it is clear from (1’) that
any value in excess of V /I leads to positive thrust, numerical
coefficients of both terms on the right side being positive.
At low forward speed, therefore, f may be arbitrarily small,
the limit of static thrust (V = 0) corresponding to thrust
proportional to square of frequency. It is also found that
no value of flapping frequency below V/I leads to positive
thrust, regardless of speed V.

The contrast with steady-flow force phenomena is further
clarified by interpreting separately the two terms on the
right side of (1). The first of these, despite the striking
formal resemblance to the Kutta-Joukowsky steady lift
formula, exhibits a completely different character in the
present case. Instead of circulation proportional to speed,
as in the steady airfoil theory, Eq. (2) shows that T' is
proportional to frequency in the limit of low speeds, so that
the thrust contribution represented by the term in question
vanishes only as the first power of V. At higher speeds this
term approaches the V-square dependence as in steady flow.
The second term, containing a part independent of speed
V, therefore dominates the force effects at low speeds. This
term has no counterpart in steady lifting flows.
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N the fields of boundary-layer theory and unsteady thermal
conduction, there is considerable use for profile methods.!- 2
These methods are applied to the solution of problems where
a function is known to exist, usually in a semi-infinite space,
which is known to have its greatest variation in magnitude
close to one of the boundaries. Usually it is known that the
function is monotonic also. The profile methods that are
commonly used at present are approximations in two ways:
first the outer boundary condition is brought from infinity to
a finite distance from the inner surface, and then the profile is
approximated by the use of a polynomial. The profile is then
required to satisfy some integral condition. Since the region
over which the function is approximated is finite, Weierstrass’
theorem can be invoked to protect the use of the polynomial.
However, it would seem that this theorem could be too strong
for what is required. Furthermore, the degree of closeness
of a low-order polynomial to the true function is very small,
and this can adversely affect computations of hydrodynamic
stability.

There seems to be some merit in exploring the possibility
of finding simple, transcendental, approximate profiles that
could be used in such integral methods. In order to obtain
some hint of a suttable profile, it is useful to examine available
numerical solutions for a typical problem, the incompressible
boundary-layer flow over a wedge, i.e., the Falkner-Skan-
Hartree problem. The exponential function is an elementary
transcendent, and since the profiles resemble “decay’” curves
it is natural to examine the local logarithmic decrement. This
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is displayed in Fig. 1, in which 7% is the dimensionless space
similarity parameter, f is the dimensionless stream function,
and B is the wedge parameter; @ > 0 corresponds to acceler-
ated flows. From the figure it is seen that there is a consider-
able indication of linearity of the local logarithmic decrement;
the profile converges with increasing strength to its outer
boundary condition. The linearity is particularly noticeable
for 8 > 0 and remains a reasonable approximation for 8 < 0.
Accordingly, a profile function can be written

Il

pron = exp[—exp(a + bn)]/exp[—expal

such that proy = 1 at 4 = 0, pron — 0 as y — «, and where
the function is monotonic, provided that a and b are real and
b is positive. For severe cases with 8 < 0, it might be possible
to use inner and outer expansions of this linear type, or,
alternatively, to use an argument (a 4 by + c9?.
Computations for the wedge-flow laminar boundary layer
have been performed using the profile function already given
to obtain both velocity profiles and minimum critical Reynolds
numbers as functions of the wedge parameter 8. The profile
function contains two parameters that are functions of §,
and, consequently, it is necessary to use two simultaneous
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equations (the integral momentum and energy equations) to
determine them. It was found that the integrals involved
could be reduced quite readily to the exponential integral,
which is extensively tabulated. Comparison of this profile
function with the exact solution for both wall shear and
minimum critical Reynolds number is excellent, except for
values of 8 close to that for separation. For values of 8 >
—0.08, the shear stress is within 0.39, of Hartree’s values, and
the minimum ecritical Reynolds number is within 39, of
Tetervin’s values,® which are based on Hartree’s profiles.
Details of the computations are available elsewhere.*
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